液体光学原位系统

简要描述:采用MEMS微加工工艺在原位样品台内构建液氛纳米实验室,通过样品台内置的光纤将光作为外场条件搭载其上,通过MEMS芯片和光纤引入的光源对样品施加光场刺激条件,在进行光学性质测量的同时,结合使用EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米甚至原子层面实时、动态监测样品在液氛环境中随光场变化产生的微观结构演化、反应动力学、相变、元素价态、化学变化、微观应力以及表/界面处的

  • 产品型号:
  • 厂商性质:生产厂家
  • 更新时间:2022-09-26
  • 访  问  量: 2136

详细介绍

TEM液体热-电-光(单)杆头.png


我们的优势

业界最高分辨率

1.MEMS加工工艺,芯片视窗区域的氮化硅膜厚度最薄可达10 nm

2.芯片封装采用键合内封以及环氧树脂外封双保险方式,使芯片间的夹层最薄仅约100~200 nm,超薄夹层大幅减少对电子束的干扰,可清晰观察样品的原子排列情况,相环境可实现原子级分辨

3.经过特殊设计的芯片视窗形状避免氮化硅膜鼓起导致液层增厚而影响分辨率。


高安全性

1.市面常见的其他品牌液体样品杆,由于受自身液体池芯片设计方案制约,只能通过液体泵产生的巨大压力推动大流量液体流经样品台及芯片外围区域,有液体大量泄露的安全隐患。其液体主要靠扩散效应进入芯片中间的纳米孔道,芯片观察窗里并无真实流量流速控制。

2.采用纳流控技术,通过压电微控系统进行流体微分控制,实现纳升级微量流体输送,原位纳流控系统及样品杆中冗余的液体量仅有微升级别,有效保证电镜安全。

3.采用高分子膜面接触密封技术,相比于o圈密封增大密封接触面积,有效减小渗漏风险

4.采用超高温镀膜技术,芯片视窗区域的氮化硅膜具有耐高温低应力耐压耐腐蚀耐辐照优点。


多场耦合技术

可在液相环境中实现光、电、热、流体多场耦合


优异的光学性能 

1.一体式激光光源集成紫外-可见-红外不同波段并输出特定波长激光,光信号强(最大强度不低于150 mW),可快速连续调节光源强度,响应时间短(毫秒级)。

2.特殊结构设计,超低光损耗,能量稳定均匀


智能化软件和自动化设备

1.人机分离,软件远程控制实验条件,全程自动记录实验细节数据,便于总结与回顾

2.全流程配备精密自动化设备协助人工操作,提高实验效率


团队优势

1.团队带头人在原位液相TEM发展初期即参与研发并完善该方法。

2.独立设计原位芯片,掌握芯片核心工艺,拥有多项芯片patent。

3.团队20余人从事原位液相TEM研究,可提供多个研究方向的原位实验技术支持。


技术参数


功能参数

杆体材质


视窗膜厚


漂移率


适用电镜


适用极靴


倾转角


光源波长


光源辐照强度


光纤接口


芯片池厚度


液体流速


流速精度


液压范围



应用案例

637998048966173159415.png

Structure and composition analysis of Sn@SnOx nanocrystals synthesizedby thermal deposition. a Low- and b high-magnification TEM images and cHAADF-STEM image of the Sn-SnOx core-shell structure and correspondingelemental mapping of Sn (green) and O (red).

Peng, X., Zhu, FC., Jiang, YH. et al. Identification of a quasi-liquid phase atsolid–liquid interface.Nat Commun 13,3601 (2022).


637998049459411365236.png

The in situ observation of layer growth dynamics of InCl3.3H2O ultrathinnanosheets. Sequential TEM images of A) the nucleate growth of a singlelayer, C) the enation growth of a single layer, E) the enation growth of twolayers, B,D) the corresponding statistics of the length of growth layer in(A,C) as a function of time, and F) statistics of the angle of enation growthlayer in (E) as a function of time, respectively.

Zhang J, Jiang Y, Fan Q, et al. Atomic Scale Tracking of Single LayerOxide Formation: SelfPeeling and Phase Transition in Solution[J]. SmallMethods, 2021, 5(7): 2001234.


637998054808148392329.png

In situ TEM observation of the structural changes of hydrogen evolution active sites under different illumination time.

In situ liquid optics chip: 20 nm silicon nitride.HRTEM images of Cu2O samples with different irradiated time: (a) 1 h, (b) 2 h, (c) 3 h, andschematic diagrams of (d) Cu2O structure change under irradiation.

Yu, et al., Appl. Catal., B 284 (2021) 119743.

2














产品咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
微信扫一扫
版权所有©2022 厦门超新芯科技有限公司 All Rights Reserved    备案号:闽ICP备19013696号-2    sitemap.xml    管理登陆    技术支持:化工仪器网