液体升温原位系统

简要描述:采用MEMS微加工工艺在原位样品台内构建液氛纳米实验室,通过MEMS芯片加热,结合使用EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米甚至原子层面实时、动态监测样品在液氛环境中随温度变化产生的微观结构演化、反应动力学、相变、元素价态、化学变化、微观应力以及表/界面处的原子级结构和成分演化等关键信息。

  • 产品型号:
  • 厂商性质:生产厂家
  • 更新时间:2022-09-26
  • 访  问  量: 1291

详细介绍

TEM液体加热样品杆杆头.png


我们的优势

 

业界最高分辨率

1.MEMS加工工艺,芯片视窗区域的氮化硅膜厚度最薄可达10 nm

2.芯片封装采用键合内封以及环氧树脂外封双保险方式,使芯片间的夹层最薄仅约100~200 nm,超薄夹层大幅减少对电子束的干扰,可清晰观察样品的原子排列情况,相环境可实现原子级分辨

3.经过特殊设计的芯片视窗形状避免氮化硅膜鼓起导致液层增厚而影响分辨率。


高安全性

1.市面常见的其他品牌液体样品杆,由于受自身液体池芯片设计方案制约,只能通过液体泵产生的巨大压力推动大流量液体流经样品台及芯片外围区域,有液体大量泄露的安全隐患。其液体主要靠扩散效应进入芯片中间的纳米孔道,芯片观察窗里并无真实流量流速控制。

2.采用纳流控技术,通过压电微控系统进行流体微分控制,实现纳升级微量流体输送,原位纳流控系统及样品杆中冗余的液体量仅有微升级别,有效保证电镜安全。

3.采用高分子膜面接触密封技术,相比于o圈密封增大密封接触面积,有效减小渗漏风险

4.采用超高温镀膜技术,芯片视窗区域的氮化硅膜具有耐高温低应力耐压耐腐蚀耐辐照优点。


多场耦合技术

可在液相环境中实现光、电、热、流体多场耦合


优异的热学性能

1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性

2.两电极的超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。

3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃

4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01

5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。


智能化软件和自动化设备

1.人机分离,软件远程控制实验条件,全程自动记录实验细节数据,便于总结与回顾

2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。

3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证加热实验的重现性及可靠性。

4.全流程配备精密自动化设备协助人工操作,提高实验效率


团队优势

1.团队带头人在原位液相TEM发展初期即参与研发并完善该方法。

2.独立设计原位芯片,掌握芯片核心工艺,拥有多项芯片patent。

3.团队20余人从事原位液相TEM研究,可提供多个研究方向的原位实验技术支持。


技术参数

功能参数

杆体材质


视窗膜厚


漂移率


适用电镜


适用极靴


倾转角


(HR)TEM/STEM


(HR)EDS/EELS/SAED


温度范围


温度稳定性


温度精度


加热均匀性


芯片池厚度


液体流速


流速精度


液压范围



应用案例

图片1.png

Structure and composition analysis of Sn@SnOx nanocrystals synthesizedby thermal deposition. a Low- and b high-magnification TEM images and cHAADF-STEM image of the Sn-SnOx core-shell structure and correspondingelemental mapping of Sn (green) and O (red).

Peng, X., Zhu, FC., Jiang, YH. et al. Identification of a quasi-liquid phase atsolid–liquid interface.Nat Commun 13,3601 (2022).


图片7.png

The in situ observation of layer growth dynamics of InCl3.3H2O ultrathinnanosheets. Sequential TEM images of A) the nucleate growth of a singlelayer, C) the enation growth of a single layer, E) the enation growth of twolayers, B,D) the corresponding statistics of the length of growth layer in(A,C) as a function of time, and F) statistics of the angle of enation growthlayer in (E) as a function of time, respectively.

Zhang J, Jiang Y, Fan Q, et al. Atomic Scale Tracking of Single LayerOxide Formation: SelfPeeling and Phase Transition in Solution[J]. SmallMethods, 2021, 5(7): 2001234.


未标题-1.png

In situ TEM observation of the structural changes of hydrogen evolution active sites under different illumination time.

In situ liquid optics chip: 20 nm silicon nitride.HRTEM images of Cu2O samples with different irradiated time: (a) 1 h, (b) 2 h, (c) 3 h, andschematic diagrams of (d) Cu2O structure change under irradiation.


Yu, et al., Appl. Catal., B 284 (2021) 119743.


产品咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
微信扫一扫
版权所有©2022 厦门超新芯科技有限公司 All Rights Reserved    备案号:闽ICP备19013696号-2    sitemap.xml    管理登陆    技术支持:化工仪器网